A real-time fluorescent sensor specific to Mg2+: crystallographic evidence, DFT calculation and its use for quantitative determination of magnesium in drinking water.
نویسندگان
چکیده
An "off-the-shelf" fluorescence "turn-on" Mg(2+) chemosensor 3,5-dichlorosalicylaldehyde (BCSA) was rationally designed and developed. This proposed sensor works based on Mg(2+)-induced formation of the 2 : 1 BCSA-Mg(2+) complex. The coordination of BSCA to Mg(2+) increases its structural rigidity generating a chelation-enhanced fluorescence (CHEF) effect which was confirmed by single crystal XRD studies of the BSCA-Mg(2+) complex and TD/DFT calculations. This sensor exhibits high sensitivity and selectivity for the quantitative monitoring of Mg(2+) with a wide detection range (0-40 μM), a low detection limit (2.89 × 10(-7) mol L(-1)) and a short response time (<0.5 s). It can also resist the interference from the other co-existing metal ions, especially Ca(2+). Consequently, this fluorescent sensor can be utilized to monitor Mg(2+) in real time within actual samples from drinking water.
منابع مشابه
Determination of Magnesium (II) by a Coated Graphite Electrode Based on Risperidone as an Ionophore
In this research, a coated graphite electrode was constructed for determination of Mg2+ in pharmaceutical supplements. The designed sensor demonstrates an ideal Nernstian slope (30.1 mV. Decade-1) over a wide concentration range (1×10-6- 1×10-1 Mol L-1). The selectivity of the sensor was evaluated over 16 different cations by matched potential method and no serious interference was observed fro...
متن کاملFluorescence Chemosensing of Mg2+ by Phenylhydrazone of a Difluorenylpiperidin-4-one
Magnesium is an abundant element in the environment. Magnesium ion sensing by fluorescence spectral method is of importance due to the need for the detection of the metal in the human body and the environment. In this paper, we report the Mg2+ ion sensing behavior of the phenylhydrazone derivative of a difluorenylpiperidin-4-one. The preparation method of this compound is simple. The compound s...
متن کاملDetermination of trace amounts of Ag (I) in waste water samples by a novel potentiometric sensor based on perphenazine as an ionophore
Background and Objective: Silver is a toxic heavy metal that is used in various industries and has adverse effects on both human health and the environment. In this respect its determination with sensitive and economic analytical methods is of great importance. Materials and Methods: In this research, a novel ion selective electrode based on perphenazine as an ionophore was developed for deter...
متن کاملDetermination of Chromium(III) and Magnesium(II) Ions in Pharmacological and Real Water Samples using Potentiometric Sensors based on Chitosan Schiff base Derivative as Green and Sensitive Ionophore
In the study, novel and sensitive carbon paste electrodes (CPEs) developed for thepotentiometric measurement of Cr(III) and Mg(II) ions in pharmacological and water samples.CPEs as indicator electrodes were prepared from a mixture of four components, includinggraphite powder, paraffin oil, multi-walled carbon nanotubes (MWCNTs), and a greenionophore (Chitosan Schiff base...
متن کاملConstruction of a Carbon Paste Electrode Based on Novel Thiolated Ligand Capped Gold Nanoparticles for Determination of Trace Amounts of Mercury(II)
In the present study, a simple electrochemical sensor for trace determination of Hg(II) ions in aqueous solutions was introduced. The proposed sensor was designed by incorporation of the 4-methyl-piperidine-carbodithioate capped gold nanoparticles (GNPs) into the carbon paste electrode (CPE), which provides a remarkably improved sensitivity for stripping voltammetric determination of Hg(II). Di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 44 6 شماره
صفحات -
تاریخ انتشار 2015